2022_ publication in Scientific Reports ”Control of monomeric vs clusters in ZrO2-X for solar-light H2 production from H2O has been added to the collection ”Hydrogen and alternative fuel sources”

Scientific Reports article ”Control of monomeric Vo’s versus Vo clusters in ZrO2−x for solar-light H2 production from H2O at high-yield (millimoles gr−1 h−1)” has been added to the collection ”Hydrogen and alternative fuel sources


Pristine zirconia, ZrO2, possesses high premise as photocatalyst due to its conduction band energy edge. However, its high energy-gap is prohibitive for photoactivation by solar-light. Currently, it is unclear how solar-active zirconia can be designed to meet the requirements for high photocatalytic performance. Moreover, transferring this design to an industrial-scale process is a forward-looking route. Herein, we have developed a novel Flame Spray Pyrolysis process for generating solar-light active nano-ZrO2−x via engineering of lattice vacancies, Vo. Using solar photons, our optimal nanoZrO2−x can achieve milestone H2-production yield,> 2400 μmolg−1 ­h−1 (closest thus, so far, to high photocatalytic water splitting performance benchmarks). Visible light can be also exploited by nano-ZrO2−x at a high yield via a two-photon process. Control of monomeric Vo versus clusters of Vo’s is the key parameter toward Highly-Performing-Photocatalytic ZrO2−x. Thus, the reusable and sustainable ZrO2−x catalyst achieves so far unattainable solar activated photocatalysis, under large scale production.

Leave a Reply

Your email address will not be published. Required fields are marked *